960 research outputs found

    An investigation on research and development cost reduction and channel strategies in competing supply chains

    Get PDF
    With the intensification of market competition, the competition form of firms is evolving from the competition among firms to the competition among supply chains. This paper considers a market with two competing supply chains consisting of one supplier and one manufacturer. The two supply chains compete on products’ quantities and research and development (R&D) level when the two manufacturers conduct technological innovation. This paper analyses the supply chain competition in three scenarios: two decentralized supply chains (DD), one decentralized supply chain and one centralized supply chain (DC) and two centralized supply chains (CC). The results indicate that the production quantity, the R&D level and the total profit of the integrated supply chain in DC scenario are the largest, CC scenario comes second, those of the DD scenario come third and those of the decentralized supply chain in DC scenario are the smallest. CC strategy is the supply chain system’s Nash equilibrium, which is good for the both supply chains, and there is no prisoner's dilemma

    Cold collisions of complex polyatomic molecules

    Full text link
    We introduce a method for classical trajectory calculations to simulate collisions between atoms and large rigid asymmetric-top molecules. Using this method, we investigate the formation of molecule-helium complexes in buffer-gas cooling experiments at a temperature of 6.5 K for molecules as large as naphthalene. Our calculations show that the mean lifetime of the naphthalene-helium quasi-bound collision complex is not long enough for the formation of stable clusters under the experimental conditions. Our results suggest that it may be possible to improve the efficiency of the production of cold molecules in buffer-gas cooling experiments by increasing the density of helium. In addition, we find that the shape of molecules is important for the collision dynamics when the vibrational motion of molecules is frozen. For some molecules, it is even more crucial than the number of accessible degrees of freedom. This indicates that by selecting molecules with suitable shape for buffer-gas cooling, it may be possible to cool molecules with a very large number of degrees of freedom.Comment: 22 pages, 9 figure

    Bis[1,3-bis­(diphenyl­phosphinoylimino)isoindolinato-κ3 O,N,O′]calcium(II)

    Get PDF
    In the title compound, [Ca(C32H24N3O2P2)2], the 1,3-bis­(diphenyl­phosphinoylimino)isoindoline ligand adopts a tridentate coordination mode. The compound exhibits a distorted octa­hedral geometry. The Ca atom lies on a twofold rotation axis

    A Novel Fusion Framework Based on Adaptive PCNN in NSCT Domain for Whole-Body PET and CT Images

    Get PDF
    The PET and CT fusion images, combining the anatomical and functional information, have important clinical meaning. This paper proposes a novel fusion framework based on adaptive pulse-coupled neural networks (PCNNs) in nonsubsampled contourlet transform (NSCT) domain for fusing whole-body PET and CT images. Firstly, the gradient average of each pixel is chosen as the linking strength of PCNN model to implement self-adaptability. Secondly, to improve the fusion performance, the novel sum-modified Laplacian (NSML) and energy of edge (EOE) are extracted as the external inputs of the PCNN models for low- and high-pass subbands, respectively. Lastly, the rule of max region energy is adopted as the fusion rule and different energy templates are employed in the low- and high-pass subbands. The experimental results on whole-body PET and CT data (239 slices contained by each modality) show that the proposed framework outperforms the other six methods in terms of the seven commonly used fusion performance metrics
    corecore